chromated Mo $K \alpha$; lattice parameters from leastsquares fit with 25 reflections up to $2 \theta=28.0^{\circ}$ equally distributed in reciprocal space; six standard reflections recorded every 2.5 h , only random deviations; 6413 reflections measured, $1.5 \leq \theta \leq 25.0^{\circ},-13 \leq h \leq 13$, $-14 \leq k \leq 14, \quad 0 \leq l \leq 18$; after averaging ($R_{\mathrm{int}}=$ 0.013): 5993 unique reflections, 3466 with $F \geq$ $4.0 \sigma(F)$; Lorentz-polarization correction, no absorption correction; space group $P \overline{1}$; structure solution via direct methods, ΔF syntheses and full-matrix leastsquares refinement with anisotropic temperature factors for all non- H atoms and a common isotropic temperature factor for H atoms, which were placed in geometrically calculated positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$); refinement on F with 3466 reflections and 398 refined parameters; $\quad w=1.9 /\left[\sigma^{2}(F)+0.0005 F^{2}\right] ; \quad S=0.92$, $R=0.062, w R=0.068,(\Delta / \sigma)_{\max } 0.09$; no extinction correction; largest peak in final ΔF map 0.3 (2) e \AA^{-3}; complex neutral-atom scattering factors from Cromer \& Mann (1968) and Cromer \& Liberman (1970); programs: SHELXS (Sheldrick, 1986) for structure solution, SHELX76 (Sheldrick, 1976) for structure refinement, Enraf-Nonius Structure Determination Package (Frenz, 1985) for data reduction, SHELXTL PLUS (Sheldrick, 1987) for the plot.

The molecule and the numbering scheme are shown in Fig. 1. Positional parameters and the equivalent values of the anisotropic temperature factors for the
non-H atoms are given in Table 1.* Bond lengths and angles are given in Table 2.

Related literature. Kreher \& Hildebrand (1987).

[^0]
References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Frenz, B. A. (1985). Structure Determination Package (SDPPLUS, V3.0). Enraf-Nonius, Delft, The Netherlands.
Kreher, R. P. \& Hildebrand, Th. (1987). Angew. Chem. In the press.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures from diffraction data. Univ of Göttingen, Federal Republic of Germany.
Sheldrick, G. M. (1987). SHELXTL PLUS (Release 2) for Nicolet $R 3 \mathrm{~m} / V$. Crystallographic system for solving, refining and displaying crystal structures from diffraction data. Univ. of Göttingen, Federal Republic of Germany.

Structure of r-1-Isopropyl- \boldsymbol{t}-2,t-3-diphenylaziridine

By T. SkArżyñSki
Blackett Laboratory, Imperial College, London SW7 2BZ, England

T. OLSZAK
 Department of Crystallography, Institute of Chemistry, University of Łódź, Nowotki 18, 91-416 Łódź, Poland

and R. Bartnik and G. Mlostoń
Department of Organic Synthesis, Institute of Chemistry, University of Łódź, Narutowicza 68, 90-136 Łódź, Poland

(Received 13 August 1987; accepted 15 September 1987)

1281 observed reflexions. The aziridine ring has bond lengths C-N 1.444(4), 1.449 (3), C-C $1.499(5) \AA$ and bond angles $62.4(2)^{\circ}$ at N and 58.6 (2), 58.9 (2) ${ }^{\circ}$ at C. The phenyl rings are in cis conformation with an interplanar angle of $85 \cdot 1(1)^{\circ}$.
(c) 1988 International Union of Crystallography

Table 1. Atomic coordinates and equivalent isotropic thermal parameters

$U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
N1	0.2551 (2)	0.2628 (2)	$0 \cdot 1115$ (2)	0.061
C11	0.2850 (3)	0.3507 (2)	0.0587 (4)	0.072
C12	0.2275 (5)	0.3518 (4)	-0.1151 (4)	0.103
C13	0.2348 (5)	0.4265 (3)	0.1268 (5)	0.099
C2	0.3402 (3)	0.2329 (2)	0.2651 (3)	0.062
C3	0.3420 (3)	0.1887 (2)	$0 \cdot 1223$ (3)	0.068
C21	0.2858 (3)	0.1942 (2)	0.3720 (3)	0.058
C22	0.3679 (4)	0.1727 (2)	0.5232 (4)	0.071
C23	0.3189 (5)	0.1418 (3)	0.6270 (4)	0.090
C24	0.1893 (5)	0.1308 (3)	0.5840 (4)	0.098
C25	$0 \cdot 1085$ (4)	0.1522 (3)	0.4357 (4)	0.089
C26	0.1561 (3)	0.1831 (2)	0.3309 (4)	0.069
C31	0.2904 (3)	0.0968 (2)	0.0615 (3)	0.062
C32	0.3736 (3)	0.0251 (2)	0.0797 (4)	0.081
C33	0.3274 (4)	-0.0596 (2)	0.0174 (4)	0.089
C34	0.1988 (4)	-0.0736 (3)	-0.0612 (4)	0.085
C35	$0 \cdot 1155$ (4)	-0.0032 (2)	-0.0795 (4)	0.078
C36	0.1599 (3)	0.0813 (2)	-0.0197 (4)	0.069

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

N1-C2	$1.449(3)$	C22-C23	$1.378(7)$
N1-C3	$1.444(4)$	C23-C24	$1.369(8)$
N1-C11	$1.471(4)$	C24-C25	$1.364(5)$
C11-C12	$1.499(5)$	C25-C26	$1.375(6)$
C11-C13	$1.505(6)$	C31-C32	$1.377(5)$
C2-C3	$1.499(5)$	C31-C36	$1.386(4)$
C2-C21	$1.485(5)$	C32-C33	$1.386(5)$
C3-C31	$1.490(4)$	C33-C34	$1.361(6)$
C21-C22	$1.390(4)$	C34-C35	$1.364(6)$
C21-C26	$1.373(4)$	C35-C36	$1.373(5)$
C2-N1-C3	$62.4(2)$	C2-C21-C26	$122 \cdot 8(2)$
C2-N1-C11	$116.8(2)$	C21-C22-C23	$120.4(4)$
C3-N1-C11	$116.3(3)$	C22-C23-C24	$121.1(3)$
C12-C11-C13	$112.5(3)$	C23-C24-C25	$118.6(5)$
N1-C11-C12	$108.6(3)$	C24-C25-C26	$120.9(4)$
N1-C11-C13	$109.2(3)$	C25-C26-C21	$121.3(3)$
N1-C2-C3	$58.6(2)$	C3-C31-C32	$120.0(3)$
N1-C2-C21	$120.0(2)$	C3-C31-C36	$121.9(3)$
C3-C2-C21	$126.7(3)$	C32-C31-C36	$118.0(3)$
N1-C3-C2	$58.9(2)$	C31-C32-C33	$120 \cdot 6(3)$
N1-C3-C31	$120.3(2)$	C32-C33-C34	$120 \cdot 5(4)$
C2-C3-C31	$126.3(3)$	C33-C34-C35	$119.4(3)$
C2-C21-C22	$119.4(3)$	C34-C35-C36	$120 \cdot 8(3)$
C22-C21-C26	$117.7(3)$	C35-C36-C31	$120.7(3)$

Fig. 1. View of the moelcule with the atom numbering.

Experimental. Colourless crystal, equidimensional in habit, $0.2 \times 0.3 \times 0.3 \mathrm{~mm}$, m.p. $321-322 \mathrm{~K}$, grown from ethanol, mounted in glass capillary to prevent sublimation; cell parameters and intensity data measured on Enraf-Nonius CAD-4 diffractometer with graphite monochromator; lattice parameters determined by a least-squares refinement using 25 reflexions; 3 standard reflexions, no intensity variation; 2061 independent reflexions measured to a θ limit of 75°, $\max . h, k, l,=12,14,11$; data not corrected for absorption; 1281 reflexions with $I>3 \sigma(I)$ considered observed and used in subsequent calculations; structure solved by direct methods using the EEES procedure of program SHELX76 (Sheldrick, 1976); first E map revealed positions of all non-H atoms; least-squares refinement, isotropic and then anisotropic temperature factors; H atoms located on difference Fourier maps and included in the refinement with isotropic temperature factors; weights for each reflexion in the refinement (based on F) calculated from $w=1 /\left[\sigma^{2}(F)+p F^{2}\right]$ with $p=0.005, \sigma F$ taken from counting statistics; refinement converged with $R=$ $0.049, w R=0.056$; in the last cycle of refinement $(\Delta / \sigma)_{\max }$ was 0.29 for all refined parameters; max., min. height in final difference Fourier map $=0.23$, $-0.21 \mathrm{e} \AA^{-3}$. Scattering factors from SHELX76. Atomic coordinates are given in Table 1, interatomic distances and angles in Table 2. Atom numbering is shown in Fig. 1.*

Related literature. In previous studies (Bartnik \& Mlostoń, 1983, 1984), we presented details of the synthesis and properties of the title compound and other related products. For structures of other aziridine derivatives see also Bruckner (1982), Quast, Jakob, Peters, Peters \& von Schnering (1984), Boese, Rademacher \& Treschanke (1985).

We thank the Polish Academy of Science for financial support of this work (Grant No. MR I.12).

[^1]
[^0]: * Lists of H -atom coordinates, anisotropic thermal parameters, structure-factor amplitudes and least-squares planes, dihedral angles and angles between a perpendicular of a plane and a direction have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44375 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44368 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

 ## References

 Bartnik, R. \& Mlostoń, G. (1983). Synthesis, pp. 924-925.
 Bartnik, R. \& Mlostoń, G. (1984). Tetrahedron, 40, 2569-2576.
 Boese, R., Rademacher, P. \& Treschanke, L. (1985). J. Mol. Struct. 131, 55-60.
 Bruckner, S. (1982). Acta Cryst. B38, 2405-2408.
 Quast, H., Jakob, R., Peters, K., Peters, E. M. \& von Schnering, H. G. (1984). Chem. Ber. 117, 840-849.
 Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

